1,416 research outputs found

    Minimum Density Hyperplanes

    Get PDF
    Associating distinct groups of objects (clusters) with contiguous regions of high probability density (high-density clusters), is central to many statistical and machine learning approaches to the classification of unlabelled data. We propose a novel hyperplane classifier for clustering and semi-supervised classification which is motivated by this objective. The proposed minimum density hyperplane minimises the integral of the empirical probability density function along it, thereby avoiding intersection with high density clusters. We show that the minimum density and the maximum margin hyperplanes are asymptotically equivalent, thus linking this approach to maximum margin clustering and semi-supervised support vector classifiers. We propose a projection pursuit formulation of the associated optimisation problem which allows us to find minimum density hyperplanes efficiently in practice, and evaluate its performance on a range of benchmark datasets. The proposed approach is found to be very competitive with state of the art methods for clustering and semi-supervised classification

    Assessing identity, redundancy and confounds in Gene Ontology annotations over time

    Get PDF
    MOTIVATION: The Gene Ontology (GO) is heavily used in systems biology, but the potential for redundancy, confounds with other data sources and problems with stability over time have been little explored. RESULTS: We report that GO annotations are stable over short periods, with 3% of genes not being most semantically similar to themselves between monthly GO editions. However, we find that genes can alter their 'functional identity' over time, with 20% of genes not matching to themselves (by semantic similarity) after 2 years. We further find that annotation bias in GO, in which some genes are more characterized than others, has declined in yeast, but generally increased in humans. Finally, we discovered that many entries in protein interaction databases are owing to the same published reports that are used for GO annotations, with 66% of assessed GO groups exhibiting this confound. We provide a case study to illustrate how this information can be used in analyses of gene sets and networks. AVAILABILITY: Data available at http://chibi.ubc.ca/assessGO. CONTACT: [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Progress and challenges in the computational prediction of gene function using networks: 2012-2013 update

    Get PDF
    In an opinion published in 2012, we reviewed and discussed our studies of how gene network-based guilt-by-association (GBA) is impacted by confounds related to gene multifunctionality. We found such confounds account for a significant part of the GBA signal, and as a result meaningfully evaluating and applying computationally-guided GBA is more challenging than generally appreciated. We proposed that effort currently spent on incrementally improving algorithms would be better spent in identifying the features of data that do yield novel functional insights. We also suggested that part of the problem is the reliance by computational biologists on gold standard annotations such as the Gene Ontology. In the year since, there has been continued heavy activity in GBA-based research, including work that contributes to our understanding of the issues we raised. Here we provide a review of some of the most relevant recent work, or which point to new areas of progress and challenges

    Using predictive specificity to determine when gene set analysis is biologically meaningful

    Get PDF
    Gene set analysis, which translates gene lists into enriched functions, is among the most common bioinformatic methods. Yet few would advocate taking the results at face value. Not only is there no agreement on the algorithms themselves, there is no agreement on how to benchmark them. In this paper, we evaluate the robustness and uniqueness of enrichment results as a means of assessing methods even where correctness is unknown. We show that heavily annotated ('multifunctional') genes are likely to appear in genomics study results and drive the generation of biologically non-specific enrichment results as well as highly fragile significances. By providing a means of determining where enrichment analyses report non-specific and non-robust findings, we are able to assess where we can be confident in their use. We find significant progress in recent bias correction methods for enrichment and provide our own software implementation. Our approach can be readily adapted to any pre-existing package

    Concurrent lumbosacral and sacrococcygeal fusion: a rare aetiology of low back pain and coccygodynia?

    Get PDF
    Sacrum is a triangular bone placed in the base of the spine and formed by the synostosis of five sacral vertebrae (S1–S5). Its upper part is connected with the inferior surface of the body of L5 vertebra forming the lumbosacral joint, while its lower part is connected with the base of the coccyx forming the sacrococcygeal symphysis, an amphiarthrodial joint. The existence of four pairs of sacral fora­mina in both anterior and posterior surface of the sacrum is the most common anatomy. Nevertheless, supernumerary sacral foramina are possible to be created by the synostosis of lumbosacral joint or sacrococcygeal symphysis. We present a case of an osseous cadaveric specimen of the sacrum belonging to a 79-year-old Caucasian woman. A rare variation of the anatomy of the sacrum is reported; in which, the simultaneous fusion of the sacrum with both the L5 vertebra and the coccyx has created six pairs of sacral foramina. This variation should be taken into serious consideration, especially in the domain of radiology, neurosurgery, orthopaedics and spine surgery, because low back pain, coccygodynia and other neurological symptoms may emerge due to mechanical compression. (Folia Morphol 2018; 77, 2: 397–399

    Higher-order conservative interpolation between control-volume meshes: Application to advection and multiphase flow problems with dynamic mesh adaptivity

    Get PDF
    © 2016 .A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach

    Structured light techniques for 3D surface reconstruction in robotic tasks

    Get PDF
    Robotic tasks such as navigation and path planning can be greatly enhanced by a vision system capable of providing depth perception from fast and accurate 3D surface reconstruction. Focused on robotic welding tasks we present a comparative analysis of a novel mathematical formulation for 3D surface reconstruction and discuss image processing requirements for reliable detection of patterns in the image. Models are presented for a parallel and angled configurations of light source and image sensor. It is shown that the parallel arrangement requires 35\% fewer arithmetic operations to compute a point cloud in 3D being thus more appropriate for real-time applications. Experiments show that the technique is appropriate to scan a variety of surfaces and, in particular, the intended metallic parts for robotic welding tasks

    Phylogenomics investigation of sparids (Teleostei: Spariformes) using high-quality proteomes highlights the importance of taxon sampling

    Get PDF
    Sparidae (Teleostei: Spariformes) are a family of fish constituted by approximately 150 species with high popularity and commercial value, such as porgies and seabreams. Although the phylogeny of this family has been investigated multiple times, its position among other teleost groups remains ambiguous. Most studies have used a single or few genes to decipher the phylogenetic relationships of sparids. Here, we conducted a thorough phylogenomic analysis using five recently available Sparidae gene-sets and 26 high-quality, genome-predicted teleost proteomes. Our analysis suggested that Tetraodontiformes (puffer fish, sunfish) are the closest relatives to sparids than all other groups used. By analytically comparing this result to our own previous contradicting finding, we show that this discordance is not due to different orthology assignment algorithms; on the contrary, we prove that it is caused by the increased taxon sampling of the present study, outlining the great importance of this aspect in phylogenomic analyses in general

    A Force-Balanced Control Volume Finite Element Method for Multi-Phase Porous Media Flow Modelling

    Get PDF
    Dr D. Pavlidis would like to acknowledge the support from the following research grants: Innovate UK ‘Octopus’, EPSRC ‘Reactor Core-Structure Re-location Modelling for Severe Nuclear Accidents’) and Horizon 2020 ‘In-Vessel Melt Retention’. Funding for Dr P. Salinas from ExxonMobil is gratefully acknowledged. Dr Z. Xie is supported by EPSRC ‘Multi-Scale Exploration of Multi-phase Physics in Flows’. Part funding for Prof Jackson under the TOTAL Chairs programme at Imperial College is also acknowledged. The authors would also like to acknowledge Mr Y. Debbabi for supplying analytic solutions.Peer reviewedPublisher PD
    • …
    corecore